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1.  Introduction

The continuous demand for denser integration, lower power 
consumption, and higher bandwidth density requires devel-
oping increasingly complex interconnect technologies [1]. For 
instance, three-dimensional integration (3DI) is being explored 
as an innovative approach [2] to address the relentless need 
for dense interconnects with lower latency and energy dissipa-
tion through shortening the length of interconnects [3, 4]. One 
form of 3DI is enabled by vertically stacked silicon tiers and 
interconnected using through-silicon-via (TSV). This approach 
represents promising technology to keep pace with Moore’s 
law [5] and incorporates the modular design benefits of a het-
erogeneous architecture [6]. TSV geometry, especially diameter, 
largely determines the electrical attributes and mechanical reli-
ability of the interconnects as well as the 3D stack and motivates 
the need for scaling TSVs dimensions. For example, a 10 µm long 
on-chip wire with a 10 µm diameter TSV exhibits a 30 ps delay 

while the same length on-chip wire with a 5 µm diameter TSV 
exhibits an approximate latency of 10 ps [7]. Moreover, reducing 
the TSV diameter can significantly mitigate the stresses related 
to copper (Cu) expansion as the mechanical stress is propor-
tional to the square of the TSV radius. Relieving the mechanical 
stress is further beneficial as it results in a smaller keep-out-zone 
(KoZ) [8]—which is designed to guard active devices against 
the adverse proximity effects of TSVs [9].

Scaling TSVs is challenging as the fabrication of smaller 
diameters using conventional processes faces limitations [10]. 
This is due to the strong dependency of both the via etch rate 
and metallization processes on the via aspect-ratio (AR) and 
diameter. A diffusion-barrier and conductive seed-layer depo-
sition as the first steps of metallization are typically preformed 
using magnetron sputtering deposition [11, 12]. However, this 
method of material deposition is not effective for the fabrica-
tion of high AR scaled TSVs as it may cause the TSV opening 
diameter to decrease before the via sidewall is fully coated 
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[10]. This issue is caused by prolonged sputter deposition 
time, which is necessary to ensure continuous film formation 
as the material flux density at the bottom of TSV is limited.

Despite the relentless efforts to reduce TSV footprint  
[3, 13–18], virtually no results have been reported for high 
AR (greater than 10:1) Cu TSVs (based on superfilling) in 
bulk silicon with total diameters below one micron, as shown 
in figure 1. In this paper, TSVs with sub-micron diameter and 
16:1 AR are fabricated and characterized. The fabrication pro-
cess presented in section 2 discusses the key enabling modules 
developed for scaling TSV technology. This includes 1-devel-
opment of low roughness and scallop-free nano-Bosch silicon 
etching, and 2-a demonstration of void-free Cu electrodeposi-
tion directly on a titanium nitride (TiN) diffusion barrier film. 
Lastly, the electrical resistance and ampacity of the fabricated 
sub-micron TSVs are measured using the 4-wire Kelvin probe 
technique.

2.  Fabrication

2.1.  Electron beam lithography (EBL)

The simplified fabrication process outlined in this paper 
is illustrated in figure  2. A 300 nm thick SiO2 inter-level 
dielectric (ILD) is thermally grown at 1050 °C using a wet 
oxidation furnace. To protect the ILD layer during the chem-
ical-mechanical-planarization (CMP) step, approximately 
500 nm thick silicon-nitride (SiN) layer is deposited using 
plasma-enhanced-chemical-vapor (PECVD) as the CMP 
stop layer. Next, a 500 nm thick PECVD SiO2 layer is depos-
ited as the dielectric hardmask followed by deposition of a 
100 nm thick Chromium (Cr) as the metal mask. The Cr mask 
is a transition hardmask used for etching 1.3–1.5 µm thick 
dielectric layers and for transferring the pattern from the soft-
mask (EBL photoresist) to the dielectric hardmask. Next, a 

900 nm thick ZEP520A photoresist is spin-coated on the Cr 
layer at 500 rpm for 60 s followed by a pre-exposure bake of 
180 °C for 2 min using a hotplate (see figure  2(a)). The Cr 
mask enables etching of the 1.5 µm thick dielectric layers 
since EBL photoresist is not thick enough to etch the dielectric 
layers (based on its etch selectivity). Arrays of circular fea-
tures are exposed with different doses to experimentally 
determine the proper base exposure dose. Figure 3(a) shows 
exposure dose versus the remaining thickness of photoresist in 
75  ×  75 µm square shape features after developing in Amyl 
Acetate for 2 min. These control features (i.e. dose squares) 
are designed to monitor photoresist thickness variations and 
required adjustments on the exposure dose. The optimum 
base dose is estimated to be 200 µC cm−2 considering the first 
fully developed dose square with sharp corners as shown in 
figure 3(b).

2.2.  Hardmask etching

Fine resolution Cr mask dry etching (step (b) in figure 2) is 
performed using Chlorine (Cl2), Oxygen (O2), and Hydrogen 
(H2) gases in an inductively coupled plasma (ICP) system 
[19]. Figure 4(a) shows Cr etch rate characterization for the 
dose squares using a profilmeter with respect to DC bias of 
the RF coil. Since the etch rate of the sub-micron features 
is slower than in the dose squares, 10% over etching is per-
formed to ensure that the features are fully etched as shown 
in figure 4(b). Next, the remaining ZEP520A on the Cr mask 
is stripped off in 1165 solvent at 80 °C for 45 min prior to 
etching the SiO2 mask. Eventually, the SiO2 hardmask is dry 
etched using a mixture of fluorocarbon gases (C4F8 and CF4), 
and O2 in an ICP system [20].

2.3.  Deep silicon etching

The Bosch process is dependent on the geometry of features 
being etched. Figure  5 shows an excessive undercut, poor 
selectivity, and pronounced sidewall roughness resulting from 
a standard Bosch etch of the sub-micron TSVs (step (c) in 
figure 2). To minimize undercut and increase mask-to-silicon 
etch selectivity, the process parameters should be adjusted 
accordingly. It is also important to achieve a relatively smooth 
sidewall with smaller scalloping as it could be crucial for high 
AR structures in different applications. For example, through 
modeling, it has been shown that excessive scalloping on  
the TSV sidewall impacts TSV reliability and electrical  
characteristic [21, 22].

The bosch process involves sequential etching and pas-
sivation cycles with different process parameters such as 
cycle duration, plasma power, chamber pressure, gases 
flow rate, and silicon substrate temperature. These process 
parameters non-linearly influence the overall etching perfor-
mance, which makes the optimization procedure challenging 
to formulate. While there is significant effort in this space 
[23–26], some of the solutions for etching sub-micron size 
features exhibit limitations [27–30]. In this paper, an exper
imental approach is adopted for achieving reasonable etch 
results for the target application. To limit the possible number 

Figure 1.  TSV aspect ratio versus diameter for TSVs in the 
literature.
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of different combinations with the process parameters, only 
the effects of the passivation cycle duration, the etching cycle 
duration, and O2 flow rate are explored in this effort. Adding 
O2 to SF6 in the etching cycle forms a thin SiOxFy passivation 

film that improves anisotropic etching [31], which is believed 
to result in smaller undercut and a smoother sidewall [32]. 
Thus, two different flow rate ratios for SF6 to O2 are explored 
(as a function of etch-to-passivation cycle ratio) to observe 
undercut and selectivity behavior with all other process 
variables kept constant at the base conditions. Figure  6(a) 
shows that the smallest undercut is achieved at higher O2 
flow rates but the corresponding data point on the selectivity 
graph (figure 6(b)) does not demonstrate the highest achiev-
able selectivity. However, minimizing undercut is a more 
critical objective since poor selectivity could be mitigated 
by depositing a thicker hardmask layer. Sidewall scalloping 
is simultaneously monitored for each experiment by cross-
sectional SEM imaging. Figure 7 shows an etched silicon via 
that corresponds to the minimum undercut data-point in fig-
ures 6(a) and 31:1 selectivity. This reasonable selectivity and 
undercut results from longer passivation cycle with a higher 
O2 content.

Figure 2.  Fabrication process flow. (a) Deposition of: 1-SiO2 ILD layer, 2-SiN CMP stop layer, 3-SiO2 and Cr hardmasks 4-EBL 
photoresist layer followed by EBL lithography. (b) Cr mask etching and pattern transfer to SiO2 hardmask. (c) Deep etching Si using the 
developed nano-Bosch process. (d) Deposition of: 1-SiO2 liner 2-TiN diffusion barrier layer 3-Cu electrode layer. (e) Cu electrodeposition, 
followed by CMP. (f) TSV revealing followed by patterning and metallization of the pads and wires.

Figure 3.  (a) Different exposure doses are applied to the sample 
to find the optimum dose. (b) Dose squares show photoresist 
remaining after development as a control procedure for monitoring 
required exposure dose.

Figure 4.  (a) Cr etching rate variation indicated by DC bias 
fluctuation. (b) SEM cross-section from dry etched features on the 
Cr hardmask.

Figure 5.  Standard Bosch etching introduces significant undercut 
and roughness to sub-micron diameter features.

J. Micromech. Microeng. 27 (2017) 025011
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2.4.  Metallization

Void defects in the Cu core of the TSVs are a major manufac-
turing reliability concern, and thus, must be explored for the 
TSV under consideration. Depositing a diffusion-barrier layer 
along with a conductive seed-layer on the TSV sidewalls are 
the very first steps of the metallization process that signifi-
cantly impact the subsequent Cu electrodeposition. Defect-free 
coverage of the seed-layer on the TSV sidewalls is important 
since any discontinuity of the film from the top to the bottom 
of the TSV could result in voids. Conventional PVD methods, 
such as sputtering, exhibit limitations for the conformal depo-
sition of the diffusion-barrier film (e.g. TiN) and seed-layer 
(e.g. Cu) due to strong dependency of material deposition 
upon the via AR and diameter [10]. To address this issue, 
atomic layer deposition (ALD) is an attractive alternative for 
conformal film deposition in high AR trenches. Deposition of 
TiN—diffusion-barrier layer—using ALD for interconnects 
has been explored previously [33–35]. TiN is electrically 

conductive, which opens the possibility for using it as both 
a diffusion barrier and a seed layer. However, the resistivity 
of TiN is large and thus forms a large series resistance over a 
large surface area which makes it challenging for use as a seed-
layer on a large diameter wafer. Because the series resistance 
causes a non-uniform current density distribution over a large 
surface area, (e.g. 4-inch diameter silicon wafer) non-uniform 
electroplating results across the wafer. To address this limita-
tion, a thin layer of Cu (approximately 100 nm) is evaporated 
on the TiN coated substrate (see figure 2(d)). It is important 
to emphasize that this Cu layer does not cover the TiN film 
on the TSV sidewalls but mostly only coats the top surface 
of the wafer. This not only bypasses the series resistance of 
TiN film, but also makes the subsequent Cu electrodeposi-
tion less dependent upon the thickness of the TiN layer. In 
this effort, ALD TiN is deposited on an SiO2 liner using 
Cambridge NanoTech Plasma ALD tool (step (d) in figure 2). 
The employed precursors are (Tetrakis(dimethylamido)
Titanium(IV)) (TDMAT) and NH3 [34] processed at 250 °C. 
The thickness of the TiN film is measured to be approximately 
45 nm using a Woollam M2000 Ellipsometer. To prove the 
concept, a test sample is partially electroplated for 10 min and 
cleaved for cross-sectional inspection. Figure  8 shows that 
cupric ions are reduced on the TiN film and form a layer of 
Cu on the TSV sidewall. This proves that the use of TiN is 
a feasible approach for metalizing scaled TSVs. Next, elec-
trodeposition is performed on the sample (see figure  2(e)) 
using super-filling and reverse pulse plating (RPP) techniques  
[36–38]. The super-filling technique employs special additives 
in the electroplating electrolyte that accelerates Cu deposition 
in the bottom of the TSV while decreases Cu growth rate at 
the top. However, there are different electroplating bath chem-
istries and additives [39] that makes the experimental design 
space large. Thus, an electroplating bath (MICROFAB DVF 
200) specialized for TSV processing [40] with two additive 
compounds, accelerator (Part ‘B’) and suppressor (Part ‘C’), 
is employed as a starting point and the end result is shown 
in figure 9(a). It is believed that the bottom voids are formed 
due to large grain growth close to the TSV opening, causing 
pinching. This coarse Cu grain growth might be because of 

Figure 6.  (a) Undercut versus etching/passivation ratio. (b) 
Selectivity versus etching/passivation ratio. (c) Silicon etching rate 
versus etching/passivation ratio.

Figure 7.  SEM cross-section of the sub-micron diamater via deep 
etched in silicon. No scalloping is observed in the magnified image.

Figure 8.  Cross-sectional image, shows that cupric ions are reduced 
on the TiN film and forming a layer of Cu on the TSV sidewall.

J. Micromech. Microeng. 27 (2017) 025011
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the bath chemistry and additives concentration that are optim
ized for fast electroplating of TSVs with diameter ranging 
from 5 µm to 20 µm [41, 42]. To test this hypothesis, another 
electroplating bath (TECHNIPULSE 5300) that is designed 
for finer grain deposition of Cu [43] has been explored using 
the electroplating parameters shown in table  1. The cross-
sectional TSV FIB image shown in figure 9(b) resulting from 
this bath chemistry exhibits no Cu voids and is a significant 

improvement. To ensure the imaged sample is defect free, 
polishing is continued to the deeper regions as shown in 
figure 9(b). It is important to note there were a number of chal-
lenges associated with the cross-sectioning of high AR TSVs; 
for instance, the sample should be perfectly perpendicular 
to the ion-beam and any small stage misalignment causes 
non-uniform FIB milling. In figure 9(c), it is shown that the 
cross-section of the Cu core resembles a needle due to a higher 
removal rate at the top. Moreover, simultaneous milling of 3 
different materials (silicon, SiO2, and Cu) is complex as they 
have different hardness. Although no voids are observed in 
the cross-sectioned samples regardless of these imaging chal-
lenges, we are aware that significantly larger visual data set is 
needed to demonstrate the manufacturing yield.

3.  Electrical characterization

3.1.  Electrical resistance

To characterize electrical resistance (RTSV) of the fabricated 
TSVs in section  2, the back side of the silicon substrate is 
aligned with the topside features (e.g. TSVs) and patterned 
using optical lithography. Next, the patterned features (i.e. 

Figure 9.  (a) SEM cross-section from the electropled TSV using MICROFAB DVF 200 plating bath that exhibits bottom-voids and a 
pinch-off at the TSV opening. (b) SEM cross-section at 50% and 30% depth from a sample electropled using TECHNIPULSE 5300 plating 
bath. (c) SEM cross-section from a sample resembling a needle due to FIB stage misalignment.

Table 1.  Reverse pulse electroplating parameters.

Process parameter Unit

Reverse cycle duration 2 ms
Reverse pulse duty cycle 50 %
Reverse pulse frequency 1000 Hz
Reverse current Approx. 25 mA
Forward pulse duty cycle 50 %
Forward pulse frequency 200 Hz
Forward cycle duration 25 Mims
Forward current Approx. 15 mA
Agitation 200 RPM
Bath temperature Approx. 23 °C

J. Micromech. Microeng. 27 (2017) 025011



R Abbaspour et al

6

openings) on the back side are dry etched (see figure 2(f)) to 
reveal the blind end of the TSVs. This creates a cavity with 
approximately 285 µm depth (for a 300 µm thick silicon 
wafer), as shown in figure 10(a). Figure 10(b) shows the TSV 
Cu core revealed after backside etching. Next, the closed elec-
trical loop is formed by shorting the revealed end of the TSVs 
by sputtering a layer of Cu into the cavity. The probing pads 
and wires for electrical characterization are patterned using 

EBL and the metal layers—Ti/Cu/Au (30 nm Ti, 1 µm Cu, and 
350 nm Au)—are deposited using a sputtering tool for good 
step coverage.

Next, RTSV of 15 µm deep TSVs with approximately 
680 nm diameter Cu core is measured using the four-wire 
Kelvin probe technique as shown in figures  11(a) and (b). 
Figure 11(c) illustrates a Gaussian distribution of the meas-
ured RTSV for different DUTs. The average measured RTSV 

Figure 10.  (a) SEM cross-section from the backside etched silicon substrate that shows 285 µm deep cavity. (b) SEM image from the 
revealed end of TSVs after backside etching shows the Cu core of TSVs.

Figure 11.  (a) Schematic of the 4-wire Kelvin probe technique for characterizing the DUT in the test-vehicle. (b) Measured RTSV of DUTs 
approximately ranging from 1.14 Ω to 1.27 Ω. (c) Gaussian distribution of the measured RTSV for different DUTs. (d) RTSV measured for 2, 
3, 4, and 8 parallel TSVs.

J. Micromech. Microeng. 27 (2017) 025011
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is calculated to be approximately 1.2 Ω. Furthermore, RTSV 
for 2, 3, 4, and 8 parallel TSVs is measured and plotted in 
figure  11(d). The slope of the fitted curve suggests that the 
extracted average RTSV for a single TSV is 1.216 Ω which 
agrees with the measured RTSV. Given the fabricated TSV 
dimensions, Cu resistivity of the metal core is extracted to be 
approximately 2.95 µΩ cm. It is shown by Chang et al [44] 
that the use of the chosen additives in the electroplating bath 
chemistry increases Cu resistivity from 2 µΩ cm to 2.9 µΩ cm. 
This agrees with the measurements presented in this paper.

3.2.  Current-carrying capacity

Figure 12(a) illustrates the schematic of the test vehicle that 
is designed to measure the current-carrying capacity (CCC) of 
the sub-micron TSVs fabricated in section 2. The CCC mea-
surement is conducted by monitoring RTSV while DC current 
is pumped into a single TSV (i.e. DUT). To decrease the return 
path electrical resistance, eight TSVs are connected in parallel 
for this experiment. This ensures that the current flow is not 
limited in the return path. Next, the DC current is increased 
until RTSV exhibits a rapid change (ΔRTSV/RTSV  ⩾  20%), 
indicating that the DUT has reached its maximum CCC (i.e. 
ampacity). The measurements shown in figure 12(b) suggest 
that the ampacity of the DUT is 360 µA, or 105 kA cm−2.

4.  Conclusion

In this paper, we reported enabling fabrication processes 
for sub-micron TSVs to gain the most from the connectivity 
benefits (e.g. low parasitic capacitance) of fine-grain 3DI. 
The presented sub-micron TSV technology enables hetero-
geneous 3D ICs using vertically stacked thin silicon tiers. 
The demonstrated approximately 900 nm diameter TSVs are 
15 µm deep with 680 nm Cu core. To address the challenges 
in fabricating these TSVs, nano-Bosch silicon etching with 
no scalloping and direct Cu super-filling on a TiN diffusion 
barrier layer have been developed as the two key enabling 
modules. Furthermore, using the test-vehicle, the average 
electrical resistance of these sub-micron vias is measured to 
be approximately 1.2 Ω. Furthermore, maximum CCC of the 
scaled TSVs is characterized to be approximately 360 µA. 

Given TSV dimensions, the current density at maximum 
CCC and Cu resistivity are extracted to be approximately  
105 kA cm−2 and 2.95 µΩ cm, respectively.
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